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Spinocerebellar ataxia type 2 (SCA2) is due to a CAG
repeat expansion in Ataxin-2 gene (ATXN2), encoding a
polyglutamine (polyQ) stretch. Thirty-four or more
uninterrupted (pure) CAG repeats are associated with
cerebellar ataxia, slow saccades, and parkinsonism,
beginning before 60 years [1]. SCA2 is associated with
neuronal loss in the cerebellum, substantia nigra,
striatum and globus pallidus; and intranuclear aggrega-
tion of polyglutamine stretches, labelled by 1C2
antibody, in the cerebellum [2]. When interrupted by
CAA motifs, full CAG expansions produce isolated
levodopa-responsive parkinsonism [3]. On the other
hand, intermediate alleles greater than 26 [4], and up to
39 CAG repeats [5], represent a strong risk factor for
amyotrophic lateral sclerosis (ALS) associated with neur-
onal TDP-43 (TAR DNA binding Protein 43) inclusions.

ATXN2 contribution to TDP-43-proteinopathies has
been studied mostly in ALS. We evaluated the contribu-
tion of ATXNZ2 in 31 patients with frontotemporal lobar
degeneration (FTLD) and pathologically proven TDP-43
inclusions (FTLD-TDP) without known related mutation
(Supplementary methods, Additional file 1: Table S1).
One patient (patient 5, Additional file 1: Table SI1)
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carried a 39 CAG expansion interrupted by four CAA mo-
tifs (CAGg—CAA-CAG,—-CAA-CAG,-CAA-CAGy-CAA--
CAGI10), and a 27 CAG intermediate allele (CAGg—CAA—
CAG,—CAA-CAG,-CAA-CAGg) (Supplementary results).
The patient developed agrammatism, word omissions and
dysarthria, suggestive of nonfluent primary progressive
aphasia, at age 70 (Supplementary results). Brain imaging
revealed frontal, left peri-sylvian and parietal atrophy; cere-
bellum was normal (Fig. 1 a-d). At age 73, the association
of marked frontal executive dysfunction (planning, atten-
tion, inhibition, mental flexibility deficits), ideomotor
apraxia (praxis score: 4/23), akinetic-rigid parkinsonism,
with asymmetric fronto-temporo-parietal atrophy, was con-
sistent with a frontal-behavioral subtype of corticobasal
syndrome (CBS) [6]. He had no cerebellar syndrome. He
died at age 77. No information about the patient’s family
was available.

A post-mortem examination was performed
(Supplementary methods and results). Both 39 and 27
CAQG alleles were found in all studied brain structures
(frontal cortex, striatum, mesencephalon, occipital
cortex, cerebellum) (Additional file 1: Figure S1 and
Figure S2). Macroscopic examination revealed marked
atrophy of frontal, temporal lobes, Ammon’s horn (CA1l)
and the subiculum. Neuronal loss and gliosis, associated
with a superficial laminar spongiosis, were severe in the
superficial layers of the middle frontal gyrus, motor
cortex, supramarginal gyrus, CAl and the subiculum.
The pons (including the locus coeruleus), the cerebellum
(Fig. 1e) and the dentate nucleus were normal. TDP-43,
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(arrows) in the amiculum of the inferior olives. All scale bars= 10 um

Fig. 1. Brain imaging and pathology. Left: Brain MRI and CT scan and HMPAO-SPECT examination of patient 5 (aged 73 years). a. Brain T1
axial sections showing marked bilateral frontal atrophy, associated with predominantly left parietal atrophy (arrows). b. T1 axial and
coronal sections, showing no cerebellar atrophy. c. brain CT scan (axial sections) showing predominantly left peri-sylvian and frontal atrophy
(arrows). d. HMPAO-SPECT examination (axial and coronal sections) showing bilateral, predominantly left (arrow), hypoperfusion. L: left; R: right.
Right: Brain pathological lesions of patient 5. e. Cerebellum. Haematoxylin-Eosin stain. Normal density of Purkinje cells, of granule cells
and of glomeruli. f. Dentate gyrus. Phospho-TDP-43 immunohistochemistry. Neuronal cytoplasmic inclusion. g. Upper layers of the middle frontal
gyrus. Phospho-TDP-43 immunohistochemistry. Several cytoplasmic inclusions (short arrows) in glial cells. One phospho-TDP-43 positive neurite (long
arrow). h. Middle frontal gyrus. Phospho-TDP-43immunohistochemistry. Neuronal cytoplasmic inclusion. i. Middle frontal gyrus. Phospho-TDP-43
immunohistochemistry. Cat-eye nuclear inclusion (arrow). j. Medulla oblongata. Neurofilamentimmunohistochemistry. Numerous axonal spheroids

pTDP-43, p62 and ubiquitin immunohistochemistry
revealed small round cytoplasmic inclusions, sometimes
glial, more abundant in the superficial layers of the mid-
dle frontal gyrus, motor cortex, and supramarginal gyrus
(Fig. 1e-j). Rare pTDP-43 ‘cat eye’ intranuclear inclusions
were detected (Fig. 1i). The presence of TDP-43 positive
cytoplasmic inclusions, mainly distributed in the upper
layers of the cortex, lead to the diagnosis of type A
FTLD-TDP [7]. Few cytoplasmic inclusions were found
in the dentate gyrus (Fig. 1f). Scarce TDP-43 and
pTDP43 positive neurites were present, mainly in the
frontal cortex and the supramarginal gyrus (Fig. 1g-i).
No skein like inclusions were observed in the hypoglos-
sal nucleus. Ubiquitin and p62 immunohistochemistry
did not reveal inclusion in the cerebellum. No intranuc-
lear inclusions were detected with 1C2 antibodies. No
alpha-synuclein immunostaining was noted in the
substantia nigra. Ataxin2 immunochemistry revealed
granular cytoplasmic staining in Purkinje cells of the
cerebellum and in neurons of spinal cord, similar to that
found in an ALS case with intermediate 32 CAG
expansion, and weak diffuse cytoplasmic staining in
some neurons of the frontal cortex (Additional file 1:
Figure S3).

The presentation by CBS, without cerebellar ataxia, or
cerebellum lesions on imaging and pathological
examination (Fig. 1b, e), was clearly distinct from SCA2
phenotype. The neuropathology, characterized by
pTDP-43-positive inclusions in the neocortex, but no cere-
bellar lesions or 1C2 inclusions, was also different from
SCAZ2 patients (Additional file 1: Table S2). The phenotype
was distinct from the late levodopa-responsive parkinson-
ism associated with interrupted expansions [3, 8]. Lastly,
Lewy bodies and 1C2-positive inclusions in substantia
nigra, pontine nuclei and cerebellum, described in few par-
kinsonian patients [9], were absent in our case. This study
shows that ATXN2 phenotypes are not restricted to cere-
bellar ataxia, parkinsonism and ALS, but are expanded to
pure isolated FTLD phenotypes. Although a coincidental
occurrence of FTLD-TDP and ATXN2 mutation cannot be
formally excluded, all known FTLD and ALS genes were
normal in our patient. More importantly, an interrupted
ATXN?2 expansion was previously identified in a patient
with FTD-ALS and type B FTLD-TDP pathology [10], both
cases thus strongly support the causative genetic link
between FTLD-TDP and ATXN2.

The clinical variability of ATXN2 expansions is not
fully explained. In most repeat expansion disorders,
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somatic mosaicism of the expanded alleles contributes
to the clinical expression. Conversely to pure ATXN2
expansions, no (or a low level of) brain mosaicism was
observed in this case, probably because interrupted
expansions are more stable than pure ones. Interrupted
expansions are also more stable than uninterrupted ones
across meiosis [3]. It possibly confers a risk of anticipa-
tion lower than in pure CAG repeats, which should be
considered in genetic counselling. Interrupted and pure
expansions may have selective topographic toxicity
involving preferentially the subcortical or the neocortical
structures, causing either isolated parkinsonism or
cortical syndromes. Distinct composition and/or
localization of CAAs within interrupted expansions
could, in turn, be associated with different patterns of
neurodegeneration. Finally, the phenotype might be dir-
ectly impacted by the modification of RNA secondary
structure of ATXNZ2 transcripts including one or more
CAA. CAA motif interruptions decrease the stability of
CAG hairpin as indicated by higher AG in predicted
secondary structure (Additional file 1: Figure S2). These
differences can influence the set of RNA-binding pro-
teins interacting with ATXN2 RNAs, and possibly inter-
fere with RNA processing, localization or translation in
specific brain structures [11].

Our patient’s peculiar phenotype could be related to
the 27 intermediate allele, which composition is similar
that of ALS patients carrying 27 CAG alleles [12].
However he did not have ALS symptoms, and we could
not evidence selective loss of Purkinje cells in cerebellar
vermis [13], motor neurons alterations, nor cytoplasmic
filamentous pTDP-43 inclusions in motor cortex and
brainstem characteristic of ALS with intermediate alleles
[13, 14]. As such, our patient’s phenotype is more likely
related to the 39 repeat expansion.

Finally, our patient showed a rather unique lesional
pattern, characterized by FTLD-TDP type A, distinct
both from pure or interrupted expansions and inter-
mediate alleles, that expands neuropathological hall-
marks associated with ATXN2 expansions (Additional
file 1: Table S3). TDP-43 inclusions were described in
one patient carrying 42 pure ATXN2 expansion carrier
[15], as well as in SCA3, SCA7 and Huntington’s dis-
eases, three other CAG expansion disorders. Together,
these studies and ours provide robust arguments that
common TDP-43 related pathways can be involved, not
only in FTLD and ALS, but also in several CAG expan-
sion disorders including interrupted ATXN2 expansion
disease. Based on the present study, it is difficult to
assert how interrupted or pure expansions modify the
cellular localization of TDP-43 in neurons. However, it
has been evidenced that ATXN2 protein ortholog associ-
ates with TDP-43, induces its mislocalization and modi-
fies its toxicity in yeast and drosophila models [4].
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In summary, this case sheds new light on the signifi-
cance of ATXN2 in the spectrum of FTLD and TDP-43
pathologies and raises new challenges in the strategy
that has to be applied to reach the molecular diagnosis
of FTLD. It enlarges the mutation spectrum of isolated
FTLD, showing that ATXNZ2 should be analyzed in
FTLD patients, or more largely in TDP-43 cases without
known FTLD mutations, even in absence of personal or
familial history of cerebellar ataxia, ALS or parkinsonism.

Additional file

Additional file 1: Supplementary methods, cohorts description,
molecular analyses and immunostaining. (DOCX 17641 kb)
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